:: 게시판
:: 이전 게시판
|
- 자유 주제로 사용할 수 있는 게시판입니다.
- 토론 게시판의 용도를 겸합니다.
통합규정 1.3 이용안내 인용"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
18/09/06 18:42
양이 광범위하네요. 처음 부분 읽을 때 `군이론`이 뭔지 언급해 줬으면 하기를 싶었는데 읽다보니 이런 이해안가는 용어들이 너무 많네요ㅠ
18/09/07 09:34
너무 많은 내용을 다루다보니, 글이 좀 산만해졌네요. 언젠가 최대한 쉬운 언어로 '군이론'에 대한 이야기를 한 번 해 보겠습니다. 군이론은 아름다움을 향해 나아가는 베이스캠프 같은 이론이라, 그것 없이는 정상 정복이 불가능합니다.
18/09/06 18:56
잘 읽었습니다만, 사영변환, 평면 등거리 변환군, 연속 변환군, 유한군, 다양체, 복잡계 등 전문 용어가 많이 등장해서 이해가 어렵네요.
이 글에서의 설명으로 추측했을 뿐입니다만, 아래 단어중 하나 주제를 잡아서 고등학교 졸업 수준의 수학/물리학 지식을 갖춘 일반인이 이해 가능한 수준으로 설명하려고 하면 이 글 수준으로 긴 글이 나올 듯 하군요.. 군론, 사영기하학, 뇌터 정리, 유니타리 군, 게이지 대칭
18/09/07 10:01
하나하나 풀어 쓰면 아마 이 글만큼 긴 글이 나와야 할 것인데, 저도 생업이 있는 사람이라 시간이 잘 안 나네요. 기회가 있을 때마다, 이런 개념들을 한 번 잘 풀어서 설명해보도록 하겠습니다. 사실, 알고 보면 그렇게 어려운 개념들도 아닙니다.
만약 시작을 하시고 싶다면, 일단 군론부터 시작하시는 것을 추천드리고, prelim으로 미분 기하학, 해석학을 공부하시는 것도 추천드립니다.
18/09/06 19:53
제 생각으로 이러한 접근은 과도한 algorithmist적 입장이라고 봅니다. 수와 같이 매끈한 객체가 아니라 당장 필요한 자동번역, 문서 요약, 음성인식, 얼굴인식과 같은 ‘지저분한’ 현실적 문제는 몇 개의 아름다운 수식으로 해결할 수 없음이 증명되고 있습니다. 이제 data approach가 전통적인 algorithm approach를 넘어서고 있습니다. Deep Learning이 그 대표주자죠. 아름다운 몇 개의, 또는 최소 개수의 수식으로 세상의 “모든 것”을 설명하려는 시도는 이론가 특유의 강박, 또는 종교적 신념이라고 봅니다. 행마와 포석에 아름다움을 추구하는 인간 바둑이 지저분하기 짝이 없는 방법의 알파고에게 박살난 사건은 데이터 과학의 서막을 알리는 충격적 사건입니다. 성공한 이론만 예로 들어서 그렇지 “쓰잘데기 없는” 수리적(물리 포함) 이론도 아주 많습니다. 저는 어리고 영민한 젊은이들이 탐미적 이론에 빠져서 algorithm-based 과학 쪽으로 너무 경도되지 않았으면 합니다. 지질학, 민물 생태학도 수학만큼이나 아름답고 가치가 있습니다. 밥벌이에도 유리하고요.흐흐
18/09/06 20:17
이 글에서 설명하는 기본 입자들이나 물리학의 기본 법칙 같은 것 역시 원래 algorithmist적으로 접근하던 분야가 아니었습니다. 해보니까 뜻밖에 너무나 잘 되어서 놀랍고, 그에 대한 이야기가 줄줄이 나오는 거죠. 원래 인간은 전통적으로 data approach를 해왔고, 지금도 하고 있습니다. 그리고 저런 기초적인 단계에서 수학적으로 아주 아름답게 설명이 된다는 것은 곧바로 인간 전체는커녕 인간 전체를 이루는 수 자(10^24)개의 탄소 원자 중 하나조차도 아름다운 설명이 불가능하다는 좌절스런 결론으로 이어지죠... 충격이니 뭐니 새삼스럽게 말할 건 아닌 것 같습니다. 냉정하게 보면 예나 지금이나 마찬가지라는 생각입니다.
18/09/06 20:34
좋은 생각거리를 제시해 주셔서 감사합니다. 갑자기 안쓰던 머리를 쓰려니 쥐가 납니다.
+ 앞의 주장에 이어서 예를 들면 Penrose 같은 학자가 대표적인 미학적 이론주의자라고 봅니다. 이 양반은 자신의 전공을 마구 확대하여 의식, 지능의 문제에까지 나서는데요. 저는 개인적으로 이것을 이론가의 전형적인 지적 오만이라고 생각합니다. 예를 들어 지금의 컴퓨터 방식으로는 지능의 문제를 해결할 수 없으며 양자역학적 점프가 지능의 핵심이라고 주장을 합니다. 주장이죠. 정교한 이론에 대응하는 자연현상이 반드시 존재할 것이다라고 생각하는 것은 믿음의 영역이죠. 미분할 때 사용하는 무한소 입실론을 이용하면 깔끔하게 적분이 가능하고 이것으로 여러 공학적 문제를 풀지만 실제 현실에는 소립자 그 이하 크기의 입자는 없죠.(저는 그렇게 알고 있습니다. ) 어떤 것이라고 반으로 나눌 수 있는 수에 대응하는 물리적 개체, 언제든 반으로 쪼갤 수 있는 입자는 실제 존재하지 않죠. 실재론과 구성론은 과학철학의 오랜 논쟁의 주제이고 지금도 논쟁되고 있다고 합니다. 수학에서도 사회구성주의적으로 일종의 "합의"를 보는 과정이 있죠. 그게 자연을 충분한 정밀도의 근사로 묘사하면 성공한 이론이 되고요. 음악을 좋아하는 한 사람이 있는데 이 자의 주장에 의하면 모든 바하의 음악에 대응하는 자연 현상이 있다고 합니다. 그 자연의 시간과 장소를 찾아서 대응된 바하음악을 듣는 것이 최고의 즐거움이라고 합니다. 재미있는 이론이라 생각합니다. 철학이나 수학이나 모든 이론은 실재론과 관념론이 일정 시간을 두고 엎치락 뒤치락하는 것 같습니다. 변하지 않는 원칙이라면 세상의 원칙은 시대에 따라 변한다는 것이 아닐까요.
18/09/06 20:46
gauge symmety는 과도한 algorithmist적 입장이라기보다는 자연과학의 기본적인 철학과 맞닿아 있죠.
“모든 자연법칙은 gauge에 관계없이 동일하다.” 그렇기 때문에 리군과 같은 continuous symmetry가 안 들어갈 수가 없죠. 게다가 symmetry가 있을 땐 항상 그에 연관된 보존량이 존재하게 되고(예: 에너지 보존 - 시간 대칭, 운동량 보존 - 공간 대칭), 그에 따라 물질의 기본적인 상호작용을 다루는 물리학에서 gauge symmetry를 빼놓을 수가 없습니다. 물론 저 철학 자체가 진리는 아닐 수 있겠지만 그렇게 된다면 우리 우주는 법칙을 찾을 수 없는 혼돈, 파괴, 망가가 되겠죠.
18/09/06 21:58
그런 의미에서, (saazhop님께서는 탐미적 접근에만 빠지는 건 좋지 않다고 하셨고, 물론 그 자체로는 맞는 말씀이겠지만)
이러한 류의 심미적 접근이, 단순히 지적 허영이 아니고, (기대하기로는) 필연적인 귀결이라는 게, 물리학이 가질 수 있는 최고의 스웨거라고 생각하고 있습니다. 헠헠
18/09/07 01:38
쿨롱 포텐셜이 QED에서 ‘유도’되고 그 QED도 U(1) gauge에서 자연스럽게 얻어지는 걸 보고 전율을 느꼈는데, 사실 그런 거에서 전율을 느끼지 않았으면 더 편하게 살고 있지 않을까 생각해봅니다. 흨흨
18/09/07 13:10
그렇습니다. 아마 때려 죽여도 gauge symmetry를 놓을 수 없다는, 그거 가져가려면 내 목도 가져가라고 외치는 물리학자들 꽤 많을 겁니다. 그 만큼 소중하고 무섭게 뿌리 깊은 도그마죠.
18/09/07 10:15
업계 분이신 것 같네요. 반갑습니다. :)
말씀하신 것처럼, gauge symmetry는 오히려 철학에 더 가깝다고도 생각합니다. 그럴 이유는 없지만, 왠지 자연에는 원래부터 기본적인 대칭성이 있을 것 같다, 그래서 뭔가 보존되어야만 하는 물리량이 있을 것 같다, 그리고 그 물리량은 어쨌든 인간이 인지할 수 있는 형태로 나타날 것 같다. 라는 추측이 대칭성의 근간을 이루는 '철학'이라면 철학이고 믿음이라면 믿음이죠. 그리고, 잘 아시겠지만, 사실 이 대칭성이 없다면, 말씀하신 것처럼, 우주에서 관측되는 무차원 상수들은 다 자연스럽게 보이지 않았을 것입니다. 누군가 아주 미세하게 조정한 것처럼 보였겠죠. 그것을 견딜 수 있다고 생각하는 물리학자들은 아마 없을 것입니다. (초월적 존재 (예를 들어 God)을 가정하는 물리학자들을 제외하고 말입니다.)
18/09/06 20:55
게다가 양자역학적으로 gauge symmetry만 가지고는 말씀하신 지저분함을 넘어(...) 무한개의 상호작용이 있을
수 있습니다. 하지만 현실의 지저분한 법칙들은 high energy 스케일로 갈 수록 점점 더 그 크기가 줄어들 게 되고, 결국 중요한 몇개의 상호작용만 남게 되어있습니다. 그게 바로 재규격화 (renormalization)의 핵심 아이디어고, 결국 자연의 근본적인 상호작용은 gauge symmetry 뿐만 아니라 renormalizability와 함께 제한적인 수의 몇개의 항으로만 ‘아름답게’ 구성되는 것이지요.
18/09/07 10:17
디랙은 애초에 수학을 너무 사랑한나머지 다이슨의 재규격화를 어글리하다고 생각했지만, 지금 무덤에서 다시 나오면 QED 보면서 아마 박수칠 것 같습니다. (미세 구조 상수의 정확도를 보면서 뭐야 이거 무서워..이럴 것 같습니다..)
18/09/07 10:12
밑에 분들이 설명해 주셨지만, 과도한 algorithmist 적 접근과 20세기 물리학자들이 수학적 아름다움을 추구한 방식은 결이 다릅니다. 말씀하신 것처럼, 여전히 '깔끔한' 수학적 방정식으로 설명이 다 안 되는 대상은 널리고 널렸습니다. 당장 경제학 복잡계에 대한 방정식은 그 존재 여부 조차 모르는 상황이죠. 대부분의 경제학 이론에서 제시되는 수학적 방정식은 특별한 조건에 특별한 시스템에만 적용되는 평형 방정식입니다. 다만, 언급하신 딥러닝 조차, 이제는 리만 기하학과 리 군으로 접근이 가능하다는 것이 속속 제시되고 있고, (애초에 매끄러운 다양체를 포함해야 하니, 어찌보면 예견된 일이기도 했죠), 복잡계 시스템 역시, 그래프 이론의 기저에 깔린 위상 수학의 이론으로 설명될 수 있음도 제시되고 있죠.
제가 말씀드리고자 하는 것은, 데이타 기반의 과학 (업계에서는 이를 bottom-up 방식이라고 칭합니다)의 유효성은 인류 이래로 지금까지 지속되어 온 것이고, 수학적 아름다움에 기댄 이론 물리학 (업계에서는 이를 top-down 방식이라고 칭합니다)은 그 중, 적어도 일부는 처음부터 수학적으로 짜여 있어서, 발견되기만을 기다리고 있다는 것을 밀어 부치면서 유효성을 찾는 방식이라는 것입니다. 즉, 둘은 mutually exclusive 한 개념이 아닙니다. 오늘도 실험실에서 매일 같이 쌓여 가는 엄청난 데이타를 기반으로 가설을 세우고 다른 실험으로 검증하는 연구 (주로 생물학이나 화학 연구)가 전 세계적으로 이루어지고 있지만, 동시에, 어떤 물리학자들의 책상에서는 오로지 대칭성에만 입각하여 수학적 방법의 극한까지 취하는 연구도 이루어지고 있다는 것입니다. 말씀하신 것처럼, 이런 하향식 접근이 너무 과도해지면, 초끈이론이나 다중우주론 같이 실험적으로 거의 관측되기 불가능한, 이론적 유효성만 남은, 그런 (쓰잘데기 없어 보이는) 이론들도 나올 수 있습니다. 그럼에도 불구하고, 그런 이론들 역시 인류의 지식 창고에 쌓아 둘 필요는 있는 것이죠. 19세기에 나왔던 군론이 20세기의 양자 역학에 쓰일 수 있으리라, 기대했던 수학자는 거의 없었을 것입니다. 쓰잘데기 없다가 군론을 쓰레기통에 쳐박아 두었다면, QED와 QCD가 등장하는 것은 적어도 수십 년-수백 년 뒤로 미뤄졌을 것입니다. 지적하신 부분에 대해 Sabine Hossenfelder 라는 독일의 물리학자가 최근 'Lost in Math' 라는 책을 썼습니다. 최근 제 페북에, 이 책에 대한 서평을 썼는데, 사실 이 책이 지적하는 부분도, saazhop이 지적하신 부분과 어느 정도 오버랩이 됩니다. 서평을 잘 정리해서 조만간 다시 포스팅 해 보도록 하겠습니다. 좋은 의견 나눠 주셔서 감사합니다.
18/09/07 11:51
오.. Lost in math 책 소개 감사합니다. 비슷한 생각을 하신 분이 이미 계셨다니 좀 안심이 됩니다.
감동적인 서평이 기대됩니다.
18/09/07 13:09
네. 그 책은 장안의 화제 (우리나라에는 아직 번역 출간이 안 되었습니다.)가 되고 있습니다. 당연히 물리학자들은 반대파가 많고, 반대로 내부에서는 또 자성의 목소리라고 격려하는 반응도 있습니다. 물리학자 가운데서도 선배 세대와 후배 세대 간의 시각 차도 흥미롭고요. 이에 대해 조만간 정리해서 올려 보겠습니다.
18/09/07 09:54
재밌게 읽어 주셔서 감사합니다~ 고갱님.
그나저나 뉴저지 생활은 어떠신가요? 본문에 언급된 괴수들 (아인슈타인, 괴델, 노이만...)의 발자취를 바로 지근 거리에 있는 프린스턴의 IAS에서 느끼실 수 있어서, 부럽네요.흐흐
18/09/07 09:51
수학 용어에 익숙하시다면, 글에 언급된 물리 용어는 일종의 주석이라고 생각하시면 편합니다. 그러면 갑자기 잘 이해되실 거에요. 흐흐
18/09/06 23:25
좋은 글 감사합니다. 세부 사항은 거의 이해 못하고 넘어갔지만 주제와 흐름은 쉽게 흡수되는 걸 보니 참 잘쓴 글이라는 게 느껴집니다.
저는 공학 계열이라 그러면 안 되는 걸 알면서도, (수학적) 아름다움에 집착하곤 합니다. 물론 단순하고 아름다울수록 버그도 적고 유지보수도 쉬워집니다만, 그걸 사용하는 인간이 불완전한 존재인지라, 그런 아름다움을 포기해야할 때가 많아 아쉽습니다.
18/09/07 09:59
재밌게 읽어 주셔서 감사합니다! 여기저기 흩어졌던 글을 모아서 하나로 올리다 보니 좀 산만해졌는데, 그래도 잘 읽어 주셨다니 더 감사하네요.
저도 학부는 공대 출신입니다. 지금 하는 일은 공학과는 좀 거리가 있지만요. 수학의 아름다움은 사실 일부 요소는 주관적인 개념이라, 너무 거기에 천착하는 것도 안 좋은 것 같습니다. 수학의 아름다움은 나침반 정도로 써야지, GPS라고 여기면 안 될 것이라 생각합니다. 언젠가, 이에 대한 제 생각을 한 번 정리해서 또 포스팅하도록 하겠습니다. 말씀처럼, 프로그램이나 이론 모두 수학적으로 단순할 수록 좋죠. 그것을 Kolmogorov complexity로 정량적으로 측정하기도 하고요. 사실 수학적 아름다움을 이루는 요소를 크게 세 가지로 보는데, 1) 단순함, 2) 자연스러움, 3) 우아함 이 바로 그것이죠. 그런데 앞의 두 개는 어쨌든 측정이 가능하든지, 평가가 가능한데, 마지막 우아함이라는 개념은 솔직히 그런 잣대로 평가하기가 매우 어려운 개념입니다. 우아함이라는 개념에는 놀라움과 우연이지 않으면 안 될 것 같은 경이로움이 함축되어 있기 때문이죠. 그런데 놀라움이나 경이로움 같은 feel은 말그대로 feel이지, 객관적인 대상은 아니기 때문에, 느끼는 사람의 경험과 지식에 크게 의존할 수 밖에 없습니다. 또한, 그 사람이 속한 집단이 어떤 집단인지도 매우 중요해지고요. 어쨌든 단순함만 놓고 본다면, 확실히 프로그램도 그렇고 알고리듬도 그렇고 이론도 그렇고, 버그도 적고 유지보수도 쉬워집니다. 다만, 함정은, 너무 단순함을 극으로 밀어부치면, 디테일이 사라진다는 것이고, 물리계에 대한 방정식이 지극히 단순해지면, 그로부터 예측할 수 있는 물리량도 급속히 줄어든다는 단점이 있습니다. 결국, 어느 정도까지만 단순함을 추구해야 할 것이라는 의미겠죠.
18/09/07 16:30
네 저도 감사합니다. 위그너가 질문을 제시한지 반 세기가 훌쩍 넘어가고 있지만, 여전히 과학 철학자들, 미학자들, 그리고 물리학자들에게는 수학적 아름다움과 그 효용성은 큰 화두인 것 같습니다. 앞으로의 물리학에서 무엇이 나올까 기대가 되는 대목이기도 하구요.
18/09/07 00:40
사진을 보자마자 fractal이 떠올랐는데 파일제목이 바로....
어쨌든 잘 모르는데 대단해보이면 엄마가 웃으라고 해서 웃으며 추천 누르고 갑니다.
18/09/07 00:48
좋은 글 감사합니다.
지금은 다 잊어버렸지만 십수년전 현대대수학을 들었을 때가 생각납니다.(수학과 아닙니다 ㅜㅜ) 제대로 이해를 못해서 학점은 구리게 나왔지만 group theory 배울때 나왔던 lagrange’s theorem을 처음 접했을 때의 소름은 기억이 또렷히 납니다. 아마도 글쓴분께서 말씀하시는 수학적인 아름다움을 느낀 것은 아닐까 싶네요. 앞으로도 좋은 글 부탁드리겠습니다.
18/09/07 09:35
라그랑지안을 먼저 배우고 군이론을 배워도 똑같이 소오오오름 돋습니다. 그러니, 20세기초의 물리학자들이 이 우연의 일치 아닌 우연의 일치를 발견했을 때는 아마 팬티를 갈아 입었을 것 같습니다. 글 재밌게 읽어 주셔서 감사합니다!
18/09/07 10:00
좋은글 감사합니다 수학 전공하고 그 길에서 많이 멀어져 있었는데 향수를 불러일으키는 글이네요
댓글을 보니 논문 하나 발표하시고 한달간 아무것도 안 해도 행복하다고 하시던 교수님이 생각나네요 저 정도의 발견(?)을 했을때의 행복은 상상도 잘 되지 않습니다
18/09/07 10:03
읽어 주셔서 감사합니다!
아마 수학자들 중에는, 공자의 말씀처럼, 아침에 도를 들으면 저녁에 죽어도 좋다 (朝聞道夕死可矣) 라고 생각할 정도로 진리에 집착하는 분들 꽤 있을 것입니다. 리만 가설을 증명할 수만 있다면, 생명도 내 놓을 수 있다고 선언할 사람도 꽤 있을 정도로..(이쯤되면 무섭군요..)
18/09/07 13:08
네 그 정도로 수학자들을 괴롭히는 주제죠. 앞으로 50년 내로 풀릴 것이라고 예상하고 있습니다. 죽기 전에 보고 갔으면 좋겠네요.
18/09/07 14:47
오 많이 기대하고 있다고 꼭 전해 주시기 바랍니다. 리만 가설을 증명한다면, 아드님은 돈방석에...물론 그 전에 국정원 등에 신변 보호를 요청하셔야겠지만 말이죠. 아드님한테 꼭 68번 원소 어븀 (erbium)과 리만 제타 함수의 연관성을 한 번 정도는 들여다 보라고 말씀해 주시고요, 가능하면 양자 역학도 꼭 공부하라고 이야기해주세요. 관점이 넓어지고, 시각화할 때 더 많은 힌트를 얻을 수 있을 것입니다. 이 답글이 성지가 되길 바랍니다.흐흐
https://www.quantamagazine.org/quantum-physicists-attack-the-riemann-hypothesis-20170404/
18/09/07 15:39
양자역학과 리만가설이 연관이 있다라는 것만 어렴풋하게 들었었는데 뭔가 찾아볼 거리가 생겼군요. 아들하고 같이 쳐다보겠습니다. 아들이 물리와 화학쪽도 관심이 많아요. 잘 키워서 꼭 아빠 자전거 새로 사줄 수 있게 돈 많이 벌었으면..
18/09/07 15:44
물맛이좋아요 님// 좋은 생각이십니다. 주제 넘게 조언을 드리자면, 꼭 다양한 과학을 접하게 해 주세요. 수학을 좋아하는 아이들일수록, 추상의 세계에만 빠질 가능성이 좀 있는데, 수학이 얼마나 세상과 아름답게 연결되어 있는지 시시때때로 리마인드 해 줄 필요가 있습니다. 물리학은 말할 것도 없고요, 경제학이나 기상학, 천체물리학 등에도 수학이 얼마나 마춤맞게 잘 쓰이는지 알게 해 주면 매우 좋습니다. 아드님의 건승일 기원합니다. 꼭 비싼 자전거 사시길~
18/09/07 03:57
이건.... 음... 솔직히 놀랍네요....
한가지 궁금한게, 이정도 쓰시는데 얼마나 시간투자를 하시나요? 사실 본문 내용들이 제게는 매우 친숙합니다. 전공으로 교양으로 대충은 공부했다고 해도 되는 내용들인데 이런 퀄리티로 사람들에게 보여줄만한 정갈한 글로 정리할때 얼마나 걸릴지 도대체 감이 안옵니다. 존경스런 마음도 들고요. 나도 언제 한번.. 이라고 생각하다가 가끔 끄적이다.. 커리어에도 도움이 안되고 돈도 안나오는데 이렇게 고생할 필요없지 라고 그만두는 경우가 다반사라 이렇게 쓰려면 얼마나 노력이 필요한지 정말 궁금하네요.
18/09/07 09:40
저도 제 페북에 여러 파트로 포스팅한 글들을 모은 것이라, 좀 산만한 감이 없잖아 있습니다.
특히, 수학적 우아함, 수학적 심미안에 대해 바라보는 관점이 서로 정반대에 있는 두 책을 같이 읽다가, 일종의 intermission 격으로 쓴 글이라, 좀 다루는 내용이 광범위해졌습니다. 저는 이쪽 업계 사람은 아니고, 옆 동네 (응집물질물리학) 사람인데, 계 밖에서 바라보는 것이 오히려 더 재밌는 것 같습니다. 친구 중에 화공과 응집물질물리학을 전공하다가, 아예 고에너지 물리학으로 빠진 친구가 있는데, 그 친구가 사용하는 수학은 이미 제가 범접할 수 없는...그런데 그 친구마저 서스킨트의 수학에는 고개를 절레절레... 어쨌든, 이 책 저 책 읽고, 이 페이퍼 저 페이퍼 읽으면서 정리해서 시간은 좀 걸렸습니다. 아마 퀀텀님도 날 잡고 각 잡고 쓰시면, 이 정도 글 따위는 쉽게 쓰실 수 있을 겁니다. 퀀텀님의 글도 기대할게요~
18/09/07 08:55
저도 수학과 학부출신인데, 모르는 단어가 영 많네요....
옛날 과목들 기억도 되살릴겸, 유튜브나 이런 곳에 관련 설명 잘 해놓은 거 있으려나요... (그냥 알려주는 영상, 공부 말고요...)
18/09/07 09:37
수학을 공부하셨으니, 쉽게 따라 잡으실 수 있을 거에요. 대수 기하학이 이 글에서 다루는 수학의 핵심이라고 보셔도 무방하고요. 유튜브를 찾아 보지는 않았는데, 요즘엔 좋은 온라인 코스웨어가 많아서, 아마 좋은 강의들이 있을 것이라 생각합니다.
18/09/07 09:13
엄청난 글이네요. 위그너와 같은 생각을 갖고 있는 사람입니다. 우주가 수학적 구조로 구성되었다는 말이 짜릿힙니다.
요즘 AI에게 게임의 규칙만 입력하면 스스로 학습하여 결과를 내놓는 것처럼 우주를 운영하는 AI에게 규칙과 목적을 입력해주니 AI가 수학을 만들어 낸것이 아닌가라고 생각합니다. 그 규칙이 위에 나온 대칭성, 불변량 같은 것으로 봅니다. 우주에 속한 인간이 우주의 질서와 지능을 이해하고 AI를 창조하는 것이 경이롭죠. 시스템을 개발하다보면 만든시스템으로 원래의 시스템이 재기술이 되는것을 경험하면 짜릿합니다. 우즈는 c언어로 c언어 컴파일러를 만드는 과정과 같은것이 아닐까라는 생각도 해봅니다.
18/09/07 09:47
초월론자시군요.흐흐
우주가 수학적 구조로 되어있다는 이야기는 참 매력적인 이야기입니다. 다만, 모든 자연 현상 (인간이 관여하는 사회적 현상이나 복잡계 시스템 포함)이 다 수학으로 설명되느냐 하면, 그건 또 아니라는 의견이 많습니다. 글에서도 언급했듯, 극미세의 세계와 극대의 세계는 수학으로 잘 설명되지만, 정작 중간계 (적절한 용어가 생각 나지 않네요)에 대해서는 사람들이 덜 신경쓰는 감이 없잖아 있죠. 당장, 유체역학의 핵심인 Navier-Stokes 방정식의 안정적인 해가 존재하는지 여부 조차, 2세기가 지나도록 알려지지 않았는데, 물리학자들은 이에 대해 별로 신경쓰지 않고 있고, 기계공학자들은 신나게 computational fluid dynamics 시뮬레이션만 돌리고 있죠. AI에게 규칙만 입력하면 스스로 결과를 내놓는 것과, 물리학자들이 처음부터 대칭성이라는 엄청난 압박 조건을 상정하여 방정식을 찾는 것은 약간 결이 다른 접근이라고 생각합니다. 전자는 일종의 forward problem이라면, 후자는 inverse problem이라고 볼 수 있는 것이죠. 자연에는 애초에 대칭성이 존재해야 한다. 그것이 아름다우니까. 그렇다면, 이 대칭성을 만족하면서, 지금까지 알려진 이론과 현상에 위배되지 않는 새로운 방정식은 무엇인가? 하는 것이 후자의 접근입니다. 그렇지만, AI에게는 따로 제한 조건이 가해지지 않죠. 물론, self-assembly 관점에서 보면, 또 다른 이야기가 됩니다. 예를 들어, Lennard-Jones potential로 상호 작용하는 입자들이 있을 때, 온도 조건만 잘 맞으면, 이 입자들은 '알아서 (self)' 모이고, 모인 구조체는 hexagonal close packing 같은 높은 대칭성을 갖는 구조를 이룹니다. 입자들보고, 대칭성을 찾아서 조립되라고 입력하지 않아도, 오로지 포텐셜의 상수 몇 개만 조절하면, 알아서 조립이 되는 것이죠. 이런 관점에서 보았을 때, AI에게 LJ potential 같이 아주 제한된 개수의 파라미터만 주고 알아서 결과를 내라고 했을 때, 그 결과 (방정식)에 대칭성이 포함될 확률은 얼마나 될지 궁금하군요. 다만, AI입장에서는 애초에 자연에 대칭성이 있어야만 한다는 인간적인 믿음 (물리학자들도 인간이니까요) 따위는 없고, 오로지 냉혹하게 결과의 최적화만 찾아갈 뿐이니, 그것이 일치할지에 대한 보장은 없을 것이라 생각합니다. 신은 수학자인가? 에 대해서는 Yes 라고 답할 물리학자가 많겠지만, 신은 프로그래인가? 에 대해서는 No 라고 답할 물리학자가 더 많을 거에요. 이에 대해서는 본문에 언급한 컴퓨터 과학자 해밍 교수의 접근을 참고하시면 더 잘 이해하실 수 있을 겁니다.
18/09/07 09:21
본문과 밀접한 주제가 있는지 모르겠지만, 제가 학부시절에 논문에 언급했던 부분과 유사한 느낌이 나는 주제인거 같아서 한번 같이 올려봅니다. (저는 진성 수포 문과입니다) 불확정성의 원리를 통해 노벨물리학상을 수상한 수학자이자 동시에 피아니스트이기도 했던 베르너 하이젠베르크가 본인의 저서를 통해 아름다움과 수학적 원리에 대한 공통점을 언급했던 부분이죠.
'하나의 예술 양식은 이 특정한 예술의 재료에 적용되는 공식적인 규칙들의 집합으로 정의될 수도 있다. 이 규칙들은 엄격한 기준에서는 수학적인 개념들과 공식들로 표현될 수는 없을지 모르지만, 그들의 근본적 요소들은 수학의 본질적 요소들과 매우 가깝게 연관되어 있다. 등과 부등, 반복과 대칭, 그리고 특정한 집단 구조들은 예술과 수학 모두에서 근본적인 역할을 담당한다. 보통 후대에 예술의 양식이라 불리게 되는 그 형식적 체계를, 단순한 시작에서부터 그 완성을 시사하는 정교한 형식들의 풍요로움까지 발전시키기 위해 몇 세대의 일이 필요하다. ... (중략)... 하지만 다양한 예술의 양식들은 인간의 마음의 임의적인 결과물인가? 여기에서 다시 우리는 데카르트식의 구분법에 의해 혼동되면 안된다. 이 양식들은 세상과 우리 자신들, 더 정확히는 시대 정신과 예술가 사이의 상호 교류에서 태어난다. 시대의 정신은 자연 과학의 어떠한 것 만큼이나 객관적인 사실일 것이고, 이 정신은 시간으로부터 조차도 독립된, 그런 의미에서 영원하다고 할 수 있는, 세상의 특성들을 끌어낸다. 예술가는 이 특성들을 이해할 수 있도록 작품을 만들고, 이 시도에서 그는 그가 속한 양식의 형식들로 다가가게 된다' 원문은 이러한데 해석이 맞는지는 잘 모르겟네용. (A style of art can also be defined by a set of formal rules which are applied to the material of this special art. These rules can perhaps not be represented in a strict sense by a set of mathematical concepts and equations, but their fundamental elements are very closely related to the essential elements of mathematics. Equality and inequality, repetition and symmetry, certain group structures play the fundamental role both in art and in mathematics. Usually the work of several generations is needed to develop that formal beginning to the wealth of elaborate forms which characterize its completion. (……but are the different styles of art an arbitrary product of the human mind? Here again we must not be misled by the Cartesian Partition. The style arises out of the interplay between the world and ourselves, or more specifically between the spirit of the time and the artist. The spirit of a time is probably a fact as objective as any fact in natural science, and this spirit brings out certain features of the world which are even independent of time, are in this sense eternal. The artist tries by his work to make these features understandable, and in this attempt he is led to the forms of the style in which he works. Werner Heisenberg - [Physics and Philosophy: The Revolution in Modern Science] (1958)
18/09/07 09:50
매우 어려운 주제를 이미 학부 시절에 공부하셨네요. 존경스럽습니다.
실제로 본문에 언급한 것 같이, 위르겐 슈미트후버 같은 학자들은, 아예 예술작품에 감춰진 질서도와 대칭성, 그리고 불변량 같은 값을 찾는 연구를 하고 있습니다. 가장 쉽게 접근되는 작품은 몬드리안의 그림, 바흐의 음악 같이 요소를 쉽게 구분할 수 있는 것으로 시작해서, 폴락의 그림, 쇤베르크의 음악 같이 점점 어려운 작품으로 확장될 수 있는 가능성을 논하고 있습니다. 특이하게도, 피카고, 쇤베르크나 폴락이 활동하던 시기는 양자역학이 급속도로 발전하던 시기와 맞물려 있습니다. 이런 관점에서 봤을 때, 그 당시의 예술도 아마 시대 정신의 일부로서 영향을 받은 것이 아닐까 추측하는 것도 가능할 것입니다. 재밌는 주제네요.
18/09/07 11:35
대칭하니 떠오르는 좀 다른 이야기인데요, 사람의 앞 모습은 대칭이죠.
눈 2개, 귀 2개, 코와 입은 centering. 치아도 대략 대칭. 물고기도 그렇고. 복어나 명태를 앞에서 보면 좌우 대칭이죠. 개, 소, 닭, 말 모두. 불가사리 류는 대부분 점 대칭이고. 이런 대칭적 phenotying이 발생학적으로 더 유리해서 이런건가요? 한 쪽만 설계한 뒤 다른 한쪽은 그대로 복사하면 되니까. 공학적 산물인 건물, 비행기, 자동차 역시 대칭이죠. 대칭에 대한 집착은 진화적 관성에도 원인이 있지 않을까 하는 망상을 해 봅니다. 대칭을 찾아내고 그렇게 보이는 것이 주는 어떤 심리적 안정감. 만일 제가 보고있는 지금의 LCD 모니터가 찌그러진 사다리꼴이라면 몹씨 볼안할 듯 합니다. 왜 그렇까.. 곰곰히 생각을 해봐도 이유를 모르겠습니다. 비대칭에 괴로움을 느끼는 물리학자분들의 마음이 이런건가 하는 생각을 해봅니다.
18/09/07 13:07
말씀하신 대칭성의 문제는 물리학은 물론이고, 사실 미학적으로 그리 쉽게 재단할 수 있는 문제는 아닙니다. 일부 이론에 따르면, 대칭성이 있는 구조는, 패턴을 만들어 내고, 그 패턴의 규칙성은 대칭성으로 인해 예측이 가능해진다는 것인데, 인간의 두뇌는 예측 가능성이 더 높은 형태를 더 선호해 왔으므로, 인간은 본능적으로 대칭성이 있는 형태나 신호를 선호한다는 설이 있습니다. 실제로, 음악에서의 화음도 피타고라스가 수천 년 전에 발견한 원리에 따르듯, 주파수의 '자연수'비율이 맞을 때 인간의 청각에서 아름답다고 (혹은 자연스럽다고) 느껴지는데, 그 이유도, '자연수 비율'이 음률 사이에 조화 (혹은 대칭)을 필요로 하기 때문이고, 푸리에 변환에 따르면, 주기가 자연수의 비율처럼 단순한 패턴으로 동조가 되는 신호의 경우, 청각 신경이 감당해야 할 로드가 상대적으로 줄어든다고 합니다. 그렇지 않아도 처리해야 할 신호가 매초 수천 테라씩 발생하는 상황에서, 당연히 인간의 두뇌는 로드가 적은 신호 처리를 선호하게 되겠죠.
인간을 비롯한 대부분의 포유류가 왜 좌우 대칭을 갖게 되었을지도 상당히 흥미로운 질문입니다. 주로 시각으로 신호를 측정해야하는 동물들이 좌우대칭 (reflection symmetry)를 갖게 되는데, 그것은 다름이 아니라, 동물들은 3차원 공간상에 살고 있기 때문입니다. 애꾸눈으로는 공간 감각의 제한되는 데, 양쪽 눈이 있어야 원근감과 거리감, 수직-수평의 구분이 더 디테일해진다는 것을 상기해 보면 됩니다. 이렇게 시각의 좌우 대칭을 형성하기 위해서는, 동물의 배아 발생 단계에서 선대칭 요소가 가미되어야 하고, 이는 단세포에서 다세포 생물로 진화하는 과정에서, 추가된 진화의 요소일 확률이 높다고 봅니다. 그 이상은 저도 잘 모르는 분야이기 때문에, 더 드릴 말씀이 없습니다만, 애초에 인간이 대칭성을 아름다움으로 인식하게 된 요인은, 인간 자신이 거울 대칭형이고, 시각이 대칭을 구분할 수 있도록 짝이 지어졌으며, 신호 처리의 효율성을 더 높이기 위함으로 생각해 볼 수 있지 않을까 합니다.
18/09/07 11:39
흔히 인간을 연구 주제로 삼는 사회과학과 대비해 자연과학은 예외없이 깔끔하고 단순하게 설명될 수 있는 학문이라고 생각해왔는데, 이 글을 읽어보니 자연과학도 꼭 그러한 단순성이 보장되기는 쉽지 않은가보네요.
18/09/07 12:55
사실 자연과학 중에서도, 이론 물리학, 특히 입자 물리학 정도만 수학으로 깔끔하게 설명되는 경우가 꽤 있었을 뿐이지, 자연 과학에는, 아니 하다 못해 응집물질물리학에는 여전히 설명 안 되거나, 엄청난 파라미터를 필요로 하거나, unnaturalness 문제가 해결 안 되었거나, 측량할 수 없는 변수를 가정해야 한다거나 하는 경우가 더 많습니다. 그렇지만, 많은 물리학자들은 믿는 거죠. 어쨌든 모든 현상의 핵심에는 수학의 정수가 숨겨져 있을 것이라 말이죠. 그것이 정말 진리로 인도해 줄지는 시간이 지나보면 알겠지만, 물리학자들은 과거에도 수백 혹은 수천 년간 그런 식으로 과학을 이끌어 왔으니, 앞으로도 그럴 것이라고 믿는 것 같습니다.
18/09/07 11:54
좋은 글 감사합니다. 도입부 읽다 시간을 많이 들여야 하는 글임을 깨닫고 추천 먼저 드립니다. 전 Bayesian probability를 기반으로 한 Genetative Model을 연구하는 신경과학 연구실에서 공부하고 있는 석사 나부랭이인데요 분야는 다르지만 철학은 공유하고 있어 반가웠습니다. 정성어린 글 감사합니다.
18/09/07 13:32
룸메가 수학과라 몇번 얘기를 나눴는데
제가 궁금했던게 왜 기하학을 그렇게 파냐고 물었더니 대수에서 안풀리는 문제를 기하학 문제로 변환하고 기하학에서 좋은 성질을 가진 문제로 다시 변환한 다음에 다시 대수 문제로 돌아오면 풀 수 있는 문제가 되어있다는 흠좀무한 설명을 들었습니다. 저는 컴공을 하는 사람이라서 귀납법이랑 type theory를 조금 아는데 수학에서 함수공간이라던가 higher order function같은 개념들이 아무렇지도 않게 쓰이는게 참 재밌더라구요. 물론 저는 머리가 안돌아가서 해석학 중간고사에서 지지쳤습니다
18/09/07 14:49
맞아요. 수학자들 중에 (이번에 필즈상 수상한 네 명 중 두 명도)도 서로 다른 분야의 수학이 만나서 서로에게 영향을 주는 것을 매우 즐기는 사람들이 있습니다. 특히 대수와 기하는 서로 평행선을 달릴 것 같은 분야인데 묘하게 크로싱이 일어나고, 크로싱이 일어날 때마다 놀라운 발견이 나온다는 것이 참 매력적인 포인트인 것 같습니다. 컴공에 익숙하시니, 함수 공간이 당연히 친밀하게 느껴지실 것이라 생각합니다. 흐흐
18/09/07 15:59
수학이 우주와 삼라만상의 설계도고, 그것을 탐구하기 위해 일생을 바치는 사람들이 수학(과학)자들이라고 놓고보니, 뭔가 수학자들은 불교에서 말하는 보살 같은 존재가 아닐까 싶습니다.
페르마의 정리를 평생에 걸쳐 풀어냈다는 앤드류 와일즈를 비롯하여 굵직한 수학적 진리에 도달한 학자들이 그 순간 마주한 깨달음이 어쩌면 불교에서의 해탈 같은 것이 아니었을까. 하는 문과적 생각을 해봅니다. 이 글 역시 아름답네요. 속속들이 이해하려 들지 않고 그냥 문장으로 읽어도 정갈한 “수학적 아름다움”이 느껴집니다. 히읗히읗
18/09/07 16:32
불교와도 맞닿아 있다고 생각하니 흥미롭네요. 저는 불교는 잘 몰라서 뭐라 드릴 말씀은 없습니다.
앤드류 와일즈 이야기를 하셨으니, 아마 이번 세기에 누군가가 리만 가설을 200년 만에 증명할 수 있다면, 아마 페르마의 마지막 정리는 비교도 안 될 만큼, 엄청난 세기의 발견이 될 것 같습니다. 당연히 그 증명에 이른 학자는 해탈의 체험을 할 것이라 생각합니다. 열반에 든다고 해야 더 맞을까요? 글을 아름답게 봐 주셔서 감사합니다.
18/09/07 17:26
2) 그리고 왜 인간은 그것이 가능하다는 것을 인지할 수 있는 것인가 (humanly comprehensible)?
이 질문에 대한 대답으로 생물철학자들 중 일부는 생물학을 학문의 궁극이라고 주장하는데 그 이유가 우리가 자연을 인지하고 자연의 법칙을 도출할 수 있는 어떤 '균형', 또는 어떤 최적의 꼴로 수렴한 상태, 즉 보편적 진리에 대한 답변을 생물학이 줄 수 있다고 여기기 때문입니다. 이렇게 설명하니까 이상하긴 한데 결국 세상이 존재하고 존재하는 세상을 인식할 수 있는 것은 생물학적 복잡함의 극치인 우리의 두뇌가 하는 일이니 존재와 같은 심오한 것에 대한 해답은 생물학이 담고 있다고 보는거죠. 모든 존재가 우리의 인식으로부터 시작되니 인식하는 주체인 우리의 생체를 이해해야한다는 맥락이지요. 저도 제대로 이해하지 못해서 관련 서적만 남길게요. <이것이 생물학이다> 에른스트 마이어.
18/09/07 17:33
제가 제대로 이해했다면, 아마도 인류 원리 (anthropic principle)을 말씀하시고 있는 것이 아닐까 합니다. 물리학자들은 그것을 싫어하는 사람도 있고, 일리 있다고 믿는 사람도 있는데, 믿는 사람들은 그나마 약한 인류 원리 (weak anthropic principle)을 믿는 쪽에 속할 겁니다. 주장하시는 것은 아마 이와는 다른, 강한 인류 원리 (strong weak anthropic principle)에 가까운 것이 아닐까 하는데, 물리학자들이 이를 싫어하는 이유는, 결국 논리를 따라가다 보면 초월자의 존재를 가정하지 않을 수 없게 되기 때문이죠.
|