PGR21.com
- PGR21 관련된 질문 및 건의는 [건의 게시판]을 이용바랍니다.
- (2013년 3월 이전) 오래된 질문글은 [이전 질문 게시판]에 있습니다.
통합 규정을 준수해 주십시오. (2015.12.25.)
Date 2020/05/21 12:37:45
Name 카페알파
Subject [질문] 유머 게시판의 '모든 소수의 곱은 짝수입니까? 홀수입니까?' 라는 글을 보고 몇 가지 궁금한 게 생겼습니다. (수정됨)
안녕하세요. 유머 게시판에 '모든 소수의 곱은 짝수입니까? 홀수입니까?' 라는 제목의 글이 올라왔었는데요( https://pgr21.com/humor/386654?page=3 ). 제가 일하는 분야와는 천만광년정도 떨어져 있는(...)이야기라서 잘 모르겠지만, 이해가 갈 듯도, 안 갈 듯도 한데요.

어쨌든 생각하다 보니 다음의 의문이 생기더군요.

수가 무한으로 발산한다고 했을 때,

1. 2를 제외한 모든 소수의 곱( 1×3×5×7×11×... )은 짝수인가, 홀수인가? 짝수도 홀수도 아닌가?

2. 1번과 비슷한 이야기일지 모르겠는데, 모든 홀수의 곱은 짝수인가, 홀수인가? 짝수도 홀수도 아닌가?

3. 모든 짝수의 곱은 짝수인가, 홀수인가? 짝수도 홀수도 아닌가?

해당 게시물의 내용으로 미루어 생각한다면, 3개 모두 '짝수도 홀수도 아니다' 가 답일 것 같기는 한데, 실제로 답이 어떤지 궁금합니다.


P.S. - 4. 한 가지만 더...... 2를 포함한 모든 소수의 곱과 모든 홀수의 곱은 어느 것이 더 큰가?


통합규정 1.3 이용안내 인용

"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.
법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
20/05/21 13:04
수정 아이콘
짝수도 홀수도 아니며 ps와 같은 크기 비교가 무의미합니다.
20/05/21 16:38
수정 아이콘
무한도 크기 비교는 가능하지 않나요?
LinearAlgebra
20/05/21 16:47
수정 아이콘
크기 비교가 가능한 무한이 제가 밑의 댓글에서 말한 [양적 개념의 무한]입니다.
닉네임을바꾸다
20/05/21 21:12
수정 아이콘
(수정됨) 뭐 무한집합의 크기는 초한기수로 표현하긴 하죠...뭐 크기라기보단 농도로 이해하는게 낫다던가...
뭐 무한집합 자체가 자기자신을 제외한 진부분집합이 일대일대응이 존재하는 경우를 말하긴 합니다만요...
보통 무한대의 크기 비교라하면 집합론에서 무한집합의 크기를 비교한거라고 봐야...
흔히 짝수의 집합과 홀수의 집합 자연수의 집합 정수의 집합 유리수의 집합이 전부 같은 크기라던가 하는거 말이죠...
LinearAlgebra
20/05/21 13:05
수정 아이콘
일반적인 상황에서는 (일반적인 상황이라 함은 일반 사람이 생각하는 수학 수준을 뜻합니다.)

무한은 애초에 수가 아닙니다.

즉, 1, 2, 3은 모두 같은 답이 되겠지요. -> [짝수도 홀수도 아닙니다.] 애초에 수 자체가 아니니까요.

무한에는 [상태의 무한][양적 개념의 무한]이 있는데, 이 경우는 상태의 무한을 이야기하는 것이고 상태의 무한은 크기 비교라는 개념이 없습니다.

즉, 4번은 [그런거 없다.]가 답입니다. 뭐 굳이 따지자면 크기가 같다고 하는 것이 어울리겠네요.

(참고로 양적 개념의 무한은 무한끼리 크기 비교가 됩니다.)
레필리아
20/05/21 13:31
수정 아이콘
(수정됨) 무한이라는 개념이 참 복잡한데.. 무한은 무한일 뿐이고, 4의 경우 크기가 같습니다.
참고로 소수의 갯수보다 0과 1사이의 실수 갯수가 더 많습니다.
유료도로당
20/05/21 13:53
수정 아이콘
제가 이해한 바로는...

예를들어서 P(N)이 2부터 N보다 작은 소수를 모두 곱한 것이라고 치면,
N이 아무리 커지더라도 모든 자연수 N에 대해서 P(N)은 짝수라고 말할수 있습니다. 아마 이게 일반적으로 생각하는것일 겁니다.

하지만 모든 소수를 곱한것이라고 하면 개념이 달라집니다. 소수의 개수는 무한하기 때문에 모든 소수를 곱한것은 무한대로 발산하는 개념이고 '수'가 아니기 때문이라는 거죠.
그냥 대충 짝수라고 하면되지 쓸데없는 개념을 만들었냐고 생각하실수도 있지만, 대충 그런식으로 하면 더 많은 모순들이 발견됩니다.

그리고 원래 무한의 세계에서는 이상한 일들이 많이 벌어지죠. 자연수의 전체의 갯수나 짝수의 갯수나 같다던지..
겨울삼각형
20/05/21 14:11
수정 아이콘
떡밥을 물면 안돼
포프의대모험
20/05/21 16:41
수정 아이콘
상식퀴즈에서 말하는 자연수=짝수=홀수 개수 같다는것도 헛소린가요 그럼? 셋다 무한인데
LinearAlgebra
20/05/21 16:47
수정 아이콘
그건 제가 위에서 말한 [양적 개념의 무한]입니다. 그건 크기 비교가 가능해요.
워송배틀드럼
20/05/21 17:04
수정 아이콘
저걸 곧이곧대로 모든 소수의 곱으로 이해하면 곤란합니다.
유한한 값들에서 소수의 곱과 같다고 모든 경우를 확인한 것도 아니구요.
소수의 곱이라는 관점을 넘어서는 새로운 함수를 파악하는 과정입니다
20/05/21 18:43
수정 아이콘
약간 뒤늦게 이런 쓰레드를 접하게 됬는데,, 결론이 수렴하는 방향이 제가 이제껏 알던 수학적 지식과 좀 달라서 약간 놀랍습니다. (참고로 저도 수학이 전공은 아니지만 수학과 대학원 과목은 꽤 들었습니다.) 댓글의 의견을 종합하자면, "모든 소수의 곱은 무한대라서 정수가 아니며 따라서 짝/홀의 의미가 없다" 라는 것이 결론이란 건가요? 그런데, 만일 이 명제가 참이라면 "2를 제외한 모든 소수는 홀수이다" 라는 잘 알려진 명제도 거짓이 되는 것 아닌가요? '모든 소수'라는 집합에는 무한대로 커지는 수도 포함되어 있고 따라서 위의 논리대로라면 이 또한 정수가 아니기 때문에 홀/짝의 의미가 없다 라는 결론에 이르게 되는데요.
LinearAlgebra
20/05/21 19:00
수정 아이콘
"무한대로 커지는 수도 포함되어 있고" (X)

위에서 계속 이야기하고 있지만, 무한대가 수가 아닙니다.

수가 아니니 모든 소수를 모아놓은 집합의 원소라고 말하는 것 자체가 되지 않습니다.

여담으로 "2를 제외한 모든 소수는 홀수이다"는 참인 명제이긴 한데, 이 명제의 화법이 요즘 유행하는 고이즈미 아들의 화법과 같습니다. 크크크

"홀수=2의 배수가 아닌 것"이니, 위 명제는 마치 "3을 제외한 모든 소수는 3의 배수가 아니다"라고 이야기하고 있는 것과 같아요. 크크

(대충 고이즈미 아들 끄덕끄덕 짤)
저격수
20/05/21 20:02
수정 아이콘
(수정됨) 음 일단 2, 3에 대해서는 좀 잘못 생각했었는데,
https://physics.stackexchange.com/questions/233175/zeta-regularization-of-infinite-product
이 쓰레드를 보면 모든 짝수의 곱은 2^(-1/2) frac{sqrt(2pi)}{Gamma(1)} = sqrt(pi),
모든 홀수의 곱은 1/2 frac{sqrt(2pi)}{Gamma(3/2)} = sqrt(2)라는 것 같네요.
sqrt(2) < sqrt(pi) 니까 모든 짝수의 곱이 더 큰가 봅니다. 그런데 위의 sqrt(pi)와 sqrt(2)가 모든 짝수/홀수의 곱을 완전히 나타내는 게 아닌데, 크다 작다를 논해도 될지는 잘 모르겠어요.
목록 삭게로! 맨위로
번호 제목 이름 날짜 조회
148021 [질문] 대출후 한달뒤 바로갚은건 신용도에 안좋나요? [5] 달달합니다8556 20/08/29 8556
148020 [질문] 오늘 피지알이 유독 느린 것 같아요 [16] laugh6826 20/08/29 6826
148019 [질문] 엑스박스 원 패드 유선 인식이 안됩니다. [5] 파쿠만사5489 20/08/29 5489
148018 [질문] 수원, 용인에 횟집 추천해주실수 있을까요? [3] 마스쿼레이드5226 20/08/29 5226
148017 [질문] 침대, 쇼파에서 쓸 테블릿 거치대추천해주세요 [5] cs6091 20/08/29 6091
148016 [질문] QR체크인 휴대폰이 본인명의가 아닌 경우에는 이용을 못하나요? 오이자왕8152 20/08/29 8152
148015 [질문] [폴 가이즈] 시즌, 잡기, 밀기 등 질문입니다. [1] Healing7116 20/08/29 7116
148014 [질문] 증여없이 부모님에게 돈 빌리기 [6] 삭제됨7343 20/08/29 7343
148013 [질문] 온라인겜에서 판정과 프레임? [5] 스핔스핔5804 20/08/29 5804
148012 [질문] 기안84는 결국 나혼자산다에서 하차한걸까요?? [12] kogang20017926 20/08/29 7926
148011 [질문] 취미모임 코로나 환불 관련 갈등, 어떻게 생각하시나요? [18] 자몽맛오렌지6876 20/08/29 6876
148010 [질문] 단편적 스토리로 애니를 찾아주세요 한사영우4058 20/08/28 4058
148009 [질문] 코로나 2.5단계 거리두기 야외테라스 이용은? [8] Janzisuka7076 20/08/28 7076
148008 [질문] 에픽스토어에서 다음 주 무료게임 예고 [5] UGH!6037 20/08/28 6037
148007 [질문] 올레티비 아프리카tv 채널이사라졌습니다!!!!!! LCK봐야해요 도와주세요;; [5] 삭제됨10561 20/08/28 10561
148006 [질문] [LOL] 롤 배치 점수 질문 [1] -Aka4421 20/08/28 4421
148005 [질문] 패밀리카 구매를 앞두고 결정장애 1급 판정을 받았습니다. 도와주세요. [31] 오래된캬라멜7454 20/08/28 7454
148004 [질문] 폴가이즈 재밌나요? [7] 7623 20/08/28 7623
148003 [질문] 부린이....청약통장 질문입니다 [5] Xavier4796 20/08/28 4796
148002 [질문] 전자책 추천부탁드립니다. [7] monkeyD5066 20/08/28 5066
148001 [질문] 제가 예전 직장에 있을때 일어난 일인데 이거는 누구의 잘못이 더 큰가요?? [40] 잘가라장동건7927 20/08/28 7927
148000 [질문] 의사 파업으로 피해를 보는 환자에 대한 의사들의 입장은 어떠한가요? [10] AKbizs6564 20/08/28 6564
147999 [질문] 대출조회 확인방법 [9] 파란무테5878 20/08/28 5878
목록 이전 다음
댓글

+ : 최근 1시간내에 달린 댓글
+ : 최근 2시간내에 달린 댓글
맨 위로